If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3x4 + 486x2 + 7 = 0 Reorder the terms: 7 + 486x2 + 3x4 = 0 Solving 7 + 486x2 + 3x4 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 2.333333333 + 162x2 + x4 = 0 Move the constant term to the right: Add '-2.333333333' to each side of the equation. 2.333333333 + 162x2 + -2.333333333 + x4 = 0 + -2.333333333 Reorder the terms: 2.333333333 + -2.333333333 + 162x2 + x4 = 0 + -2.333333333 Combine like terms: 2.333333333 + -2.333333333 = 0.000000000 0.000000000 + 162x2 + x4 = 0 + -2.333333333 162x2 + x4 = 0 + -2.333333333 Combine like terms: 0 + -2.333333333 = -2.333333333 162x2 + x4 = -2.333333333 The x term is 162x2. Take half its coefficient (81). Square it (6561) and add it to both sides. Add '6561' to each side of the equation. 162x2 + 6561 + x4 = -2.333333333 + 6561 Reorder the terms: 6561 + 162x2 + x4 = -2.333333333 + 6561 Combine like terms: -2.333333333 + 6561 = 6558.666666667 6561 + 162x2 + x4 = 6558.666666667 Factor a perfect square on the left side: (x2 + 81)(x2 + 81) = 6558.666666667 Calculate the square root of the right side: 80.985595427 Break this problem into two subproblems by setting (x2 + 81) equal to 80.985595427 and -80.985595427.Subproblem 1
x2 + 81 = 80.985595427 Simplifying x2 + 81 = 80.985595427 Reorder the terms: 81 + x2 = 80.985595427 Solving 81 + x2 = 80.985595427 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-81' to each side of the equation. 81 + -81 + x2 = 80.985595427 + -81 Combine like terms: 81 + -81 = 0 0 + x2 = 80.985595427 + -81 x2 = 80.985595427 + -81 Combine like terms: 80.985595427 + -81 = -0.014404573 x2 = -0.014404573 Simplifying x2 = -0.014404573 Reorder the terms: 0.014404573 + x2 = -0.014404573 + 0.014404573 Combine like terms: -0.014404573 + 0.014404573 = 0.000000000 0.014404573 + x2 = 0.000000000 The solution to this equation could not be determined.This subproblem is being ignored because a solution could not be determined.Subproblem 2
x2 + 81 = -80.985595427 Simplifying x2 + 81 = -80.985595427 Reorder the terms: 81 + x2 = -80.985595427 Solving 81 + x2 = -80.985595427 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-81' to each side of the equation. 81 + -81 + x2 = -80.985595427 + -81 Combine like terms: 81 + -81 = 0 0 + x2 = -80.985595427 + -81 x2 = -80.985595427 + -81 Combine like terms: -80.985595427 + -81 = -161.985595427 x2 = -161.985595427 Simplifying x2 = -161.985595427 Reorder the terms: 161.985595427 + x2 = -161.985595427 + 161.985595427 Combine like terms: -161.985595427 + 161.985595427 = 0.000000000 161.985595427 + x2 = 0.000000000 The solution to this equation could not be determined.This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| 5n^2+11=0 | | 8b+8=5b+8 | | x^2-(3/2)x-(27/16) | | 5x+7x-7=41 | | 6(x-3)=12x+3 | | 3a-5whena=7 | | 3a-5a=7 | | 15x(1/9) | | 19r(197)+r(43)=366 | | 19r(197)+r(43)= | | 2x+x+4=42 | | 3+3x=42 | | c(1+0.075*2)=60000 | | c(1+0.075+2)=60000 | | 92+123+x=180 | | 2n^2+4n-30=0 | | 0.7x=0.862 | | 20+70+x=180 | | 2(5-4x)=3(4x+5) | | 8p^2+12p-1=0 | | c(1+0.075)(2)=60000 | | .2x+7=33 | | x+2+72+x=180 | | 0.56X=8 | | -2(3n+1)=14 | | -2x-8y=38 | | 40-2(3-7)= | | d=1/16x20^2 | | 4/5×n=38 | | A^1/5•a^3/4 | | d=1/16.20^2 | | .05x-2(x+.05)=1.4 |